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comparisons of sampling 
methods for assessing intra‑ 
and inter‑accession genetic 
diversity in three rice species using 
genotyping by sequencing
Arnaud comlan Gouda1, Marie noelle ndjiondjop1*, Gustave L. Djedatin2, 
Marilyn L. Warburton3, Alphonse Goungoulou1, Sèdjro Bienvenu Kpeki1, Amidou n’Diaye4 & 
Kassa Semagn1*

to minimize the cost of sample preparation and genotyping, most genebank genomics studies in 
self‑pollinating species are conducted on a single individual to represent an accession, which may 
be heterogeneous with larger than expected intra‑accession genetic variation. Here, we compared 
various population genetics parameters among six DNA (leaf) sampling methods on 90 accessions 
representing a wild species (O. barthii), cultivated and landraces (O. glaberrima, O. sativa), and 
improved varieties derived through interspecific hybridizations. A total of 1,527 DNA samples 
were genotyped with 46,818 polymorphic single nucleotide polymorphisms (SNPs) using DArTseq. 
Various statistical analyses were performed on eleven datasets corresponding to 5 plants per 
accession individually and in a bulk (two sets), 10 plants individually and in a bulk (two sets), all 
15 plants individually (one set), and a randomly sampled individual repeated six times (six sets). 
Overall, we arrived at broadly similar conclusions across 11 datasets in terms of SNP polymorphism, 
heterozygosity/heterogeneity, diversity indices, concordance among genetic dissimilarity matrices, 
population structure, and genetic differentiation; there were, however, a few discrepancies between 
some pairs of datasets. Detailed results of each sampling method, the concordance in their outputs, 
and the technical and cost implications of each method were discussed.

The levels and distributions of intra-accession (within-accession) genetic diversity in genebank collections pro-
vide invaluable information for diverse purposes, including (a) deciding the number of seeds (plants) per panicle 
(ear) and the number of panicles per accession (or variety) that should be sampled and conserved to capture given 
attributes; and (b) serving as baseline data for germplasm management and distribution as well as monitoring 
genetic variation and integrity during conservation and  regeneration1–4. Using limited numbers of accessions and/
or agro-morphological traits and markers in different species, previous studies assessed intra-accession genetic 
diversity using morphological and  isozymes5, amplified fragment length polymorphisms (AFLP)3,4,6, random 
amplified polymorphic DNA (RAPD)7, inter simple sequence repeat (ISSR)8,9, and simple sequence repeats (SSR) 
 markers10. RAPD, AFLP, and ISSR markers are currently becoming obsolete for germplasm characterization for 
multiple reasons, including dominant inheritance, low reproducibility, low throughput for genotyping thousands 
of collections conserved at most genebanks, low marker density (genome coverage), poor resolution associated 
with the size-based fragment analysis system, and difficulty in merging multiple datasets generated by different 
collaborators or  labs11. SSR markers are codominant and more reproducible, with better genome coverage than 
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AFLP, RAPD and ISSRs; however, they are not well suited for large-sale characterization of genebank collections, 
primarily due to lower throughput, high genotyping cost, and difficulty in merging genotypic data generated by 
multiple collaborators or labs due to their ability in detecting multiple alleles, stuttering, and addition or omission 
of a nucleotide during polymerase chain reaction (± A) that causes ambiguity in automated fragment analysis 
systems using capillary DNA  sequencers12–14.

The availability of low-cost next-generation sequencing (NGS) technologies that generate high-density 
genome-wide SNPs is providing genetic resource scientists tremendous opportunities to enhance the quality, 
efficiency, and cost-effectiveness of genebank  operations15,16. These include germplasm  curation17; generation of 
high-density reference genotypic  data18 and molecular passport  data19; gene discovery using genomewide asso-
ciation studies and selective sweep  analysis18–22; understanding the genetic profiles of the entire  collection19,23; 
identifying redundant collections and creating subsets of genetically unique accessions for genetic and breeding 
 studies19,24,25; and correcting mislabeled, taxonomically misclassified and/or misidentified  collections26,27. Using 
GBS, for example, nearly 33% of the 22,626 barley accessions at the Leibniz Institute of Plant Genetics and Crop 
Plant Research’s (Gatersleben, Germany)19 and 50% of the 1,143 accessions of a wild relative of wheat (Aegilops 
tauschii)17 were found to be potential duplicates.

Recently, our team at the AfricaRice center implemented a pilot study to characterize 4,115 rice accessions 
representing Oryza barthii A. Chev., O. glaberrima Steud. (African rice) and O. sativa L. (Asian rice) using 
DArTseq  technology28. The DArTseq-based SNPs were highly useful for a wide range of purposes, including 
(1) understanding the genetic diversity, population structure, and genetic differentiation among African rice 
(Oryza glaberrima Steud.) collections, and developing core and minicore  sets25; (2) developing species- and 
subspecies-diagnostic SNP markers to minimize misclassification, misidentification and mislabeling errors dur-
ing germplasm acquisition and routine genebank  operations26; (3) identifying candidate genes using selective 
sweep  analysis21; and (4) comparing the extent of genetic variation and relatedness among various landraces and 
improved intraspecific and interspecific rice varieties developed by AfricaRice breeders with those developed by 
other  institutions29. Based on the pilot study, we aim to genotype the entire rice collection conserved at AfricaRice 
using DArTseq and use the data to improve our germplasm curation. We will create subsets of the most geneti-
cally diverse accessions for further field evaluation, gene discovery, trait donor selection, and pre-breeding, which 
will ultimately promote the use of the collections in rice improvement. To reduce genotyping costs per accession, 
most molecular characterization studies in self-pollinating species are conducted by randomly sampling a single 
plant to represent an accession. This has been the case in our previous studies and other studies in  rice25,30,31, 
 barley19, and wild relatives of  wheat17. Single plant samples have provided invaluable data for assessing inter-
accession genetic diversity, relatedness and population structure in self-pollinating species, but are not suitable 
for measuring intra-accession diversity, which forms one of the bases of the current study. Furthermore, a single 
plant genotype data may be misleading when the extent of intra-accession diversity is greater than expected for 
different reasons, including a higher level of  outcrossing32,33, phenotypic heterogeneity, seed admixture, pollen 
contamination and off-types, which is another basis for this study. For example, sorghum landraces and wild 
rice showed an outcrossing rates that varied from 5 to 40%32 and from 4 to 25%33, respectively. As a result, there 
is concern among the genetic resources scientists that results based on a single individual genotype may not be 
comparable with multiple plants per accession, genotyped either individually or in  bulks17.

Bulk segregant  analysis34,35 refers to the genotyping of bulks of individuals using either plant tissue bulking 
or DNA  pooling36. In outcrossing species, the bulking method has been commonly used for quick and economic 
genotyping of inbred lines, populations, and open-pollinated varieties for different  purposes37–39. In selfing 
species, however, bulk segregant analysis has been used primarily for mapping genes and quantitative trait loci 
(QTL) associated with target traits of importance in  breeding34,40–44. Some researchers have recommended bulk-
ing (pooling) method for characterizing multiple individuals per accession as the basis for evaluating genetic 
identity and diversity within accession in self-pollinating  species15,17, but this method also has its limitations, 
including knowing the minimum number of individuals required in the  bulk15, and the sensitivity of the genotyp-
ing platforms in detecting rare alleles due to allele dilution  problems38,45. The alternative method of genotyping 
multiple plants per accession individually may be ideal for capturing rare alleles and estimating intra-accession 
genetic diversity but will increase the genotyping costs per accession multi-fold. The objectives of this study 
were, therefore, to: (1) assess intra-accession and inter-accession genetic diversity in 90 rice accessions, each 
represented by six leaf sampling methods (a randomly selected single plant, 5 plants, 10 plants and 15 plants, 
bulks of 5 plants and bulks of 10 plants); (2) compare the concordance among the different sampling methods 
with respect to species (O. barthii, O. glaberrima, and O. sativa) and genetic backgrounds of the germplasm (wild 
vs. landraces vs. improved); and (3) compare the outputs of the different datasets and assess if there were cases 
where one method provided obvious advantages over the others as well as the cost and technical implications of 
each method for large-scale germplasm curation and characterization in selfing species.

Methods
plant materials and genotyping. This study was conducted using a total of 1,527 DNA samples from 
90 accessions and varieties (all referred here as accessions) that represented a wild O. barthii (18), landraces of 
cultivated species of O. glaberrima (21), O. sativa subsp. indica (19), O. sativa subsp. japonica (18), and improved 
interspecific varieties/genotypes derived from crosses between O. glaberrima and O. sativa (14) (Supplementary 
Table S1). The 90 accessions were part of the rice germplasm used in our previous studies for the development 
of species- and subspecies-diagnostic SNP  markers26 and for comparing diversity indices and selective  sweeps21. 
Each accession was represented by 17 DNA samples (Fig. 1) comprised of 15 single plants, a bulk of 5 plants 
(plants numbered 1–5), and another bulk of 10 plants (plants numbered 6–15). The detailed procedures for 
genomic DNA extraction and SNP genotyping using DArTseq have been described in our previous  study25. 
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Each DNA sample was genotyped with 67,728 SNPs by the DArT Pty Ltd, Australia (https ://www.diver sitya rrays 
.com). Three DNA samples had over 70% missing data points and were excluded from the dataset. The genotype 
data of the remaining 1,527 samples were imputed using Random  Forest46, which is implemented as “random-
Forest” in the R  package47.

Statistical analyses. To evaluate the accuracy of the imputed SNPs in genetic diversity and population 
structure analyses, we first computed identity-by-state (IBS)-based genetic distance matrices from the 67,728 
SNPs before and after imputation and compared the two distance matrices using the Mantel  test48 implemented 
in NTSYSpc v2.149. Because genotyping errors may account for about 1% of observed  differences26,50,51, it is often 
difficult to consider SNPs with minor allele frequency < 0.01 as polymorphic sites. For that reason, we filtered 
the imputed genotype data using a minor allele frequency (MAF) of 0.01 and maximum heterozygosity of 0.50, 
which formed dataset Set-1 that consisted of 15 individual samples and two bulks. In this study, we used het-
erozygosity for simplicity to refer both to heterozygosity in the individuals (single plants) and heterogeneity in 
the bulks. Eleven additional subsets of data were created from Set-1 corresponding to all 15 plants individually 
(Set-2), a bulk of 5 plants (Set 3), another bulk of 10 plants (Set-4), and randomly selected individuals from Set-2 
repeated 6-times (Set-5 to Set-10), 5 plants individually (Set 11) and 10 plants individually (Set 12).

Most of the statistical analyses were performed as described in previous  studies20,25. Briefly, heterozygosity, 
IBS-based genetic distance matrices, and principal component analysis (PCA) were computed using TASSEL 
v.5.2.5852. The first two principal components (PCs) from the PCA were plotted for visual examination in XLSTAT 
2012 (Addinsof, New York, USA; www.xlsta t.com) using species/subspecies and predicted group memberships 
from phylogenetic and population structure analyses as categorical variables. The correlation between pairs of 
genetic distance matrices was computed using the Mantel  test48 implemented in NTSYSpc v2.149. The HapMap 
format of each dataset was exported to PHYLIP interleaved format using TASSEL v.5.2.57, which was then con-
verted to MEGA  X53, STRU CTU RE v.2.3.454 and ARLEQUIN v.3.5.2.255 formats using PGDSpider v.2.1.1.356. 
We used Molecular Evolutionary Genetics Analysis (MEGA) X to compute the pairwise maximum composite 
likelihood (MCL)-based genetic distance between DNA samples and accessions, for constructing phylogenetic 
trees using the neighbor-joining method, and for computing number of segregating sites (S), the proportion of 
polymorphic sites (Ps), Theta (θ), and nucleotide diversity (π). A site (SNP) was considered segregating if it had 
two or more nucleotides at that site; π refers to the average number of pairwise nucleotide differences between 
two sequences (samples), while θ was used as another estimator of diversity parameters based on the number of 
segregating sites in the samples. Phylo.io57 was used for comparing pairs of phylogenetic trees side-by-side as well 
as for computing Robinson-Foulds (RF)  distance58 and number of subtree prune-and-regraft (SPR)  distances59,60 
between pairs of phylogenetic trees. For such purposes, Newick files were generated for each dataset using MEGA 
X and used as inputs into Phylo.io.

Population structure was analyzed using the model-based method implemented in the software package 
STRU CTU RE v.2.3.454 as described in the previous  studies20,25,61. DNA samples and accessions with member-
ship probabilities > 60% were assigned to the same clusters (group), while those with probabilities < 60% in any 
group were assigned to a “mixed” group. Analysis of molecular variance (AMOVA)62 and  FST-based pairwise 
genetic distance  matrices63 were computed among and within groups using ARLEQUIN v.3.5.2.255. Accessions 
were assigned into 3–5 groups (populations) based on their species/subspecies, ecologies or group membership 
predicted from the phylogenetic and population structure analyses.

Figure 1.  Outline of the DNA (leaf) sampling methods used in each of the 90 accessions. Each accession was 
originally represented by 15 individuals (plant numbered from 1 to 15), a bulk of 5 plants (plant #1–5), and 
another bulk of 10 plants (plant #6–15).

https://www.diversityarrays.com
https://www.diversityarrays.com
http://www.xlstat.com
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Results
intra‑accession diversity. Of the 67,728 SNPs used for genotyping the 1,527 DNA samples (Supplemen-
tary Table S2), the proportion of missing data per SNP and sample before imputation varied from 0 to 64.1% 
for single plants and from 4.2 to 61.1% for bulks, with an overall average of 20.8%. In the initial genotyping data 
set, 69.1% of the markers (46,818 SNPs) were polymorphic across the 1,527 samples (Set-1), each with a minor 
allele frequency varying from 0.01 to 0.050 (Supplementary Table S3). Pearson correlation coefficients between 
minor allele frequency and heterozygosity estimated before and after imputation were high, at 0.983 and 0.998, 
respectively. The Mantel test performed on genetic distance matrices computed from all SNPs before and after 
imputation also revealed a very high positive correlation (r = 0.987). Hence, detailed results are presented only 
for the imputed version of the 46,818 polymorphic SNPs.

We assessed intra-accession diversity from Set-2, Set-11, and Set-12 that consisted of genotypic data of 15, 5, 
and 10 individuals, respectively. The percentage of SNP polymorphism, allele frequencies, heterozygosity, θ, π, 
and genetic distance between pairs of individuals belonging to the same accession are used as indicators of intra-
accession genetic diversity. The level of SNP polymorphism across the 90 accessions was highly similar across 
the different datasets (Fig. 2), which was 99.5–99.7% for single plants, 98.8–99.9% in the 5–15 individual plants, 
98.9–99.2% in the bulks (Table 1, Supplementary Table S2). Observed heterozygosity per accession computed 
from 5, 10 and 15 DNA samples ranged from 0.5 to 25.7, from 0.2 to 12.3% and from 0.2 to 25.7%, respectively 
(Supplementary Table S1, Fig. S1). Only 11 accessions had observed heterozygosity exceeding 6% for at least one 
individual (three accessions in all Set-2, Set-11, and Set-12; four accessions in both Set-2 and Set-11; four acces-
sions in both Set-2 and Set-12), which is the expected average outcrossing rate reported in cultivated  rice30,64. 
The average heterozygosity per accession estimated from all sets of 5, 10 and 15 individuals ranged from 0.5 to 
5.6%, from 0.5 to 4.0% and from 0.5 to 3.8%, respectively (Supplementary Table S1).  

As summarized in Fig. 3 and Supplementary Table S4, θ and π computed within every accession ranged from 
0.017 to 0.205 based on 5 plants per accession; from 0.019 to 0.149 based on 10 plants, and 0.019–0.140 based 
on 15 plants, which is an indication of a relatively low intra-accession diversity and more homogenous seed lot 
within most accessions. Values for θ and π estimated from Set-2, Set-11 and Set-12 within 90 accessions were 
highly correlated (0.967 ≤ r ≤ 0.996) and very low, with 81 of the 90 accessions showing < 0.06 θ and π values 

Figure 2.  Summary of the percentages of polymorphic SNPs used for statistical analyses of all accessions 
(N = 90), O. barthii (18), O. glaberrima (21), O. sativa subsp. indica (19), O. sativa subsp. japonica (18), improved 
interspecific genotypes (14), lowland O. sativa (30), and upland O. sativa (21). See Supplementary Table S1 for 
germplasm summary and Table S2 for details on the number of polymorphic SNPs for all datasets.

Table 1.  Summary of polymorphic SNPs selected for statistical analyses of 90 accessions in all datasets.

Dataset No. of plants per accession Total sample size No. of polymorphic SNPs
Proportion of SNP polymorphism as 
compared to Set-1 (%)

Set-1 15 individuals and 2 bulks 1527 46,818 100.0

Set-2 15 individuals 1347 46,774 99.9

Set-3 A bulk of 5 plants 90 46,322 98.9

Set-4 A bulk of 10 plants 90 46,446 99.2

Set-5 Single plant 90 46,601 99.5

Set-6 Single plant 90 46,678 99.7

Set-7 Single plant 90 46,573 99.5

Set-8 Single plant 90 46,649 99.6

Set-9 Single plant 90 46,647 99.6

Set-10 Single plant 90 46,595 99.5

Set-11 5 individuals 447 46,276 98.8

Set-12 10 individuals 900 46,716 99.8
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(Supplementary Fig. S2, Supplementary Table S4). However, nine O. sativa accessions adapted to the lowland 
(WAB0009756, WAB0023634, and WAB0032222) and upland (WAB0007857, WAB0010251, WAB0013330, 
WAB0021280, WAB0029923, WABTMP106) ecologies had θ and/or π values ranging from 0.061 to 0.205 in 
at least one of the three datasets, which may be due to broader intra-accession diversity or to errors that might 
have occurred during genotyping and/or sample preparation (e.g., seed mix up during planting, labeling error, 
contamination during leaf sampling or DNA extraction). To determine the cause of such unexpectedly large 
intra-accession diversity within these accessions, we compared pairwise IBS-based genetic distance for the 15 
individuals in Set-2. Figure 4 and Supplementary Table S1 summarizes the minimum, maximum, and average 
genetic distance between pairs of individuals within each accession. Pairs of individuals belonging to the same 
accession differed between 1.6 and 41.2% of the scored alleles, of which 48 accessions differed by ≤ 6% of the 
alleles of the 46,818 SNPs. The remaining 42 accessions showed at least a pair of individuals that differed by > 6% 
of the scored alleles, which is due to either greater intra-accession diversity or due to the presence of outliers. 

Figure 3.  Summary of nucleotide diversity (π) computed as measures of intra-accession genetic diversity in O. 
barthii (18), O. glaberrima (21), lowland O. sativa (30) and upland O. sativa (21). Each accession was represented 
by 15 single plant DNA samples genotyped with 48,818 SNPs. See Supplementary Table S1 for germplasm 
summary and Table S4 for molecular diversity indices of each accession.

Figure 4.  Comparisons of minimum, maximum, and average genetic distance values computed between pairs 
of 15 individuals sampled per accession in Set-2, each genotyped with 48,818 SNPs. See Supplementary Table S8 
for details.
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Figure 5 and Supplementary Fig. S3 demonstrates intra-accession diversity of some accessions with and without 
potential outliers.  

Figure 6 shows a neighbor-joining phylogenetic tree and a principal component analysis plot of the 1,347 
individuals in Set-2. In the phylogenetic tree, all individuals from 61 of the 90 accessions (67.8%) tend to be 
more similar to each other and clustered together as expected, while 25 accessions (27.8%) had 1–4 individuals 
that clustered with other accessions belonging to either the same or a different species/subspecies. Overall, 47 
of the 1,347 individuals (3.5%) from 25 accessions were suspected outliers, which included O. barthii (2), O. 

Figure 5.  A plot of identity-by-state-based genetic distance values computed within 4 accessions, each 
represented by 15 single plant DNA samples genotyped with 48,818 SNPs. Genetic distances between pairs of 
individuals within WAB0029281 and WAB0029923 were within the expected range for self-pollinated species, 
while WAB0023634 and WAB0021280 have outlier individuals. See Supplementary Figure S3 for 10 more 
accessions that had larger than expected intra-accession diversity.

Figure 6.  (a) Neighbor-joining tree constructed using Molecular Evolutionary Genetics Analysis (MEGA) X 
(https ://www.megas oftwa re.net/), and (b) plots of PC1 and PC2 from principal component analyses of 1,347 
single plant DNA samples in Set-2 based on 46,818 SNPs. In both figures, samples belonging to the same group 
have the same font color: O. glaberrima (red), O. barthii (blue), O. sativa adapted to the upland ecology (pink) 
and lowland ecology (black). See Supplementary Table S1 for group membership and Supplementary Table S8 
for genetic distance matrices.

https://www.megasoftware.net/
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glaberrima (12), O. sativa (29); the latter includes indica (2), japonica (15) and interspecific genotypes (12). The 
15 individuals from each of 4 other accessions were divided into two distinct but genetically similar sub-clusters.

We observed nine accessions (WAB0023634, WAB0029281, WAB0032222, WAB0010251, WAB0013330, 
WAB0018251, WAB0021280, WAB0029923, and WABTMP106) that differed by at least 5% of the scored alleles 
based on π, θ and IBS-based genetic distance between pairs of individuals from within the accession; all these 
accessions except WAB0029281 each had 1–3 samples that did not cluster together with the other individuals 
originating from the same accession in the phylogenetic tree. The first five principal components from PCA 
performed in Set-2 accounted for 70.6% of the variation observed across the 1,347 individuals (Supplementary 
Table S5). A plot of PC1 (51.3%) and PC2 (12.1%) revealed a similar grouping pattern as the neighbor-joining 
analysis (Fig. 6). However, all individual samples originating from O. barthii and O. glaberrima appeared nearly 
identical in the PCA plot because only 40% of the 46,818 SNPs were polymorphic within these two species as 
compared to 65% of the SNPs that were polymorphic among the O. sativa accessions.

inter‑accession diversity in multiple datasets. Using genotypic data of all accessions, we compared 
SNP polymorphisms, heterozygosity, θ, π, and genetic dissimilarity across the twelve datasets. Of the 48,818 
SNPs that were polymorphic across the 1,527 single plants and bulked DNA samples in Set-1, 98.8 to 99.9% of 
the SNPs were polymorphic in the datasets represented by a randomly selected single plant, 5–15 single plants, 
and bulks of either 5 or 10 plants. Marker polymorphisms computed among accessions belonging to the four 
different species and eco-geographical groups demonstrated highly similar patterns of polymorphism irrespec-
tive of the DNA sampling methods and genetic background of the germplasm (Fig. 2). For example, the lowest 
(19.7–20.6%) marker polymorphism was observed within O. glaberrima, which was very consistent whether 
each accession was represented by a randomly selected individual, multiple individuals ranging from 5 to 15, 
or bulks. Pearson correlation coefficients between minor allele frequencies ranged from 0.993 to 1.00 (mean 
of 0.996) and heterozygosity estimated per SNP ranged from 0.902 to 1.00 (mean of 0.965) across all datasets 
(Supplementary Table S6). Observed heterozygosity per accession computed across all datasets ranged from 0.2 
to 25.7% (Supplementary Table S1), with an overall average of 1.1%. Fourteen of the 90 accessions (15.6%) had 
an observed heterozygosity > 6.0% in one or more datasets (Supplementary Fig. S4), of which WAB0007857 and 
WAB0029923 were the most heterozygous accessions represented by 5 and 8 DNA samples with > 6.0% het-
erozygosity, respectively. Overall, approximately 84% of the 90 accessions had consistently < 6% heterozygosity 
across all datasets irrespective of the DNA sampling methods (Supplementary Fig. S4, Supplementary Table S1).

We examined the overall genetic diversity indices across all datasets by assigning accessions into groups 
(Fig. 7, Supplementary Table S7). When all 90 accessions were used for analyses, Ps, θ and π estimated across all 
datasets varied from 0.976 to 0.995, from 0.128 to 0.195 and from 0.257 to 0.268, respectively, and each param-
eter was highly similar across datasets except relatively smaller values for θ when genotyping was done on 5–15 
individuals in Set-2, Set-11, and Set-12. When we repeated the analyses using groups, Ps and θ values computed 
from Set-3 to Set-10 as well as π values estimated from all datasets showed similar patterns irrespective of the 
genetic background. On the other hand, Ps was larger and Θ was smaller when computed from the 5–15 indi-
viduals in Set-2, Set-11, and Set-12 compared to all other datasets. Overall, observed nucleotide diversity within 
O. glaberrima across all datasets, as measured by π, accounted for 40.9–50.1%, 33.4–51.9% and 28.5–35.9% of 
those of the wild O. barthii, the two O. sativa subspecies and the improved interspecific genotypes, respectively 
(Fig. 7, Supplementary Table S7).

Genetic distance and population structure. The genetic distance matrices computed between pair of 
the 90 accessions across all datasets are summarized in Fig. 8 and Supplementary Fig. S5. Overall, the mini-
mum, maximum, and average pairwise genetic distances of the 90 accessions were highly similar irrespective 
of the DNA sampling methods. For example, the mean genetic distance between all pairs of the 90 accessions 
computed from the 5–15 single plants per accession as well as the bulk of five and ten plants varied from 0.019 
to 0.697, from 0.021 to 0.732, and from 0.013 to 0.725, respectively. Mantel tests revealed a very high positive 
correlation among distance matrices between pairs of accessions (Supplementary Table S8) computed from all 
datasets, which ranged from 0.925 to 0.998 in all accessions (Supplementary Fig. S6). To determine if the genetic 
background of the germplasm influenced the correlations, we compared genetic distance matrices between pairs 
of accessions belonging to (a) O. glaberrima, O. barthii, O. sativa spp. indica, O. sativa spp. japonica and inter-
specific improved genotypes, and (b) the three groups predicted based on cluster analyses, PCA and the model-
based population structure analyses (see below). Mantel correlations between datasets varied from 0.270 to 0.991 
in O. glaberrima, from 0.878 to 0.999 in O. barthii, from 0.786 to 0.999 in indica, from 0.741 to 0.995 in japonica, 
and from 0.906 to 0.999 in interspecific improved genotypes. The lowest Mantel correlation coefficients were, 
therefore, observed within O. glaberrima, which is also evident from relatively inconsistent frequency distribu-
tions of the genetic distance matrices. When groups predicted based on the multivariate methods were consid-
ered, Mantel correlation coefficients among the distance matrices computed from all datasets were higher in the 
O. glaberrima/O. barthii group (0.945 ≤ r ≤ 1.000), followed by O. sativa adapted to the lowland (0.878 ≤ r ≤ 0.999) 
and upland (0.749 ≤ r ≤ 0.990) ecologies (Supplementary Table S9).

We examined the neighbor-joining tree constructed from the genetic distance matrix of all 1,527 samples in 
Set-1 to assess if the bulks of 5 and bulk of 10 plants consistently clustered with the 15 individual samples, which 
was observed among the 85 and 87 of the 90 accessions, respectively. About 96.4% of 1,527 single plants and 
bulked DNA samples originating from the same accession were clustered together as expected, while 3.5% of 
the individual and bulked samples from 26 accessions appeared to be potential outliers (Supplementary Fig. S7). 
DNA samples that were found to be potential outliers or mis-clustered are likely errors for different reasons, 
including admixture, contamination, and mislabeling during sampling, DNA extraction, and genotyping. We 
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then assessed population structure among the 90 accessions to determine how they tended to cluster into groups 
across all datasets. Overall, the neighbor-joining tree constructed from the genetic distance matrix computed 
from Set-2 showed three major groups (Fig. 6). Accessions belonging to O. glaberrima and O. barthii formed 
the first group. In contrast to both O. glaberrima and O. barthii accessions that did not show any population 
structure by their ecology of origin, O. sativa accessions formed two separate groups that were consistent with 
their adaptation ecologies. All O. sativa accessions and interspecific genotypes that are adapted to the lowland 
(primarily indica) and the upland (primarily japonica) ecologies were assigned into the second and third groups, 
respectively. The phylogenetic trees constructed from the other datasets revealed similar grouping patterns and 
are summarized in Supplementary Fig. S7. Overall, accessions belonging to each species and/or subspecies con-
sistently clustered together across all datasets irrespective of the leaf (DNA) sampling methods with two excep-
tions. In Set-2, Set-6, Set-7, Set-10, Set-11, and Set-12, an O. barthii accession (WAB0028942) clustered together 
with O. glaberrima accessions, while another O. barthii accession (WAB0038213) clustered with O. glaberrima 
in Set-2, Set-11, and Set-12. Robinson-Foulds (RF) and SPR distances computed as measures of differences 
(disagreements) between pairs of the neighbor-joining phylogenies constructed from all datasets varied from 
0.15 to 0.76 (RF) and from 7 to 37 (SPR) (Supplementary Table S10). The highest agreement (with the lowest 
RF value of 0.15 and SPR value of 7) was observed between phylogenies constructed from the 15 individuals in 
Set-2 and 10 individuals in Set-12.

The model-based population structure analyses revealed three distinct groups, similar to the phylogenetic 
analysis, with an O. barthii/O. glaberrima group, and two O. sativa groups adapted to the lowland and upland 
ecologies (Supplementary Table S1). The first five principal components from PCA performed across all datasets 
accounted for 70.6 to 72.3% of the molecular variation (Supplementary Table S5). A plot of PC1 and PC2 from 
all datasets also showed three distinct groups similar to the model-based population structure and the neighbor-
joining analyses (Fig. 6, Supplementary Fig. S8). The DNA samples that we considered as potential outliers in 
the phylogenetic trees were also evident in the PCA plots.

Genetic differentiation. The partitioning of the molecular variances of the various datasets into three, 
four, and five groups using AMOVA revealed that differences in groups accounted from 70.8 to 73.0%, from 69.7 
to 71.9%, and from 66.8 to 68.4%, of the total variation, respectively. From 27.0 to 33.2% of the genetic variation 
resided within accessions irrespective of the dataset (sampling methods) and the number of groups used in the 
analyses (Supplementary Fig. S9, Table S11).  FST estimated between pairs of the three, four and five groups com-
puted from all datasets showed either great (0.150–0.250) or very great (> 0.250) genetic  differentiation65, which 
varied from 0.154 to 0.819 between pairs of the 5 groups, from 0.261 to 0.827 between pairs of the four groups 
and from 0.453 to 0.785 between pairs of the three groups (Supplementary Table S12). The extent of molecular 
variance partitioned within and among groups as well as the extent of genetic differentiation between pairs of 
groups was consistently similar irrespective of the sampling methods and datasets

Discussion
Genetic diversity within and between accessions. In most genomics studies of self-pollinating spe-
cies held in genebank collections, each accession is often represented by genotype data taken from a single 
randomly sampled  individual19,25,66; this is usually done before or after one or more generations of seed puri-
fication using single seed descent under field or screen-house  conditions67. Accessions conserved at a given 
genebank may have been originally collected as populations, which are often heterogeneous with a larger plant 
to plant variation. Most genebanks minimize such high levels of intra-accession variation by purifying seed lots 
to make them acceptable for genetic and pre-breeding  studies68. In a recent example, our group at the AfricaRice 
genotyped 3,245 accessions belonging to O. barthii (115), O. sativa (772) and O. glaberrima (2,358) with 26,073 
physically mapped  SNPs21, with each accession represented by a single plant after seed  purification25. There are, 
however, concerns regarding the development of purified seed lots and/or use of a single individual to represent 
a genebank collection, especially in landraces and wild accessions. First, seed purification of thousands of acces-
sions conserved at a given genebank incurs additional financial resources, personnel, time, and space. Since 
each accession can be then split into two or more new seed lots after purification, these additional resources are 
needed not only for purification but also for managing/maintaining the purified seed  lots68. Second, most gen-
ebanks do not have clear strategies to manage the purified germplasm sets (seed lots). Third, the genotypic data 
generated from a single individual per accession with or without seed purification may not capture the genetic 
variation available within a given collection. Finally, genotyping of bulks of multiple individuals per accession 
for genomic studies in selfing species has been  suggested17 but is not yet commonly used in inbreeding species, 
although is it commonly used for similar purposes in cross-pollinating  species37,38,61,69,70. To the best of our 
knowledge, therefore, this is the first extensive and systematic study to generate well-designed empirical data 
for assessing the level and distribution of intra- and inter-accession genetic diversity across different leaf/DNA 
sampling methods in three rice species and different genetic backgrounds using genome-wide SNPs.

Overall, the various types of univariate and multivariate analyses performed in the present study revealed 
relatively consistent patterns of marker polymorphisms, heterozygosity, intra-accession, and inter-accession 
diversity indices, genetic dissimilarity, population structure, and genetic differentiation irrespective of the sam-
pling methods. Of the 1,527 DNA samples used in the present study, (1) 96.5% of the single plant DNA samples 
originating from the same accession clustered together as expected and only 3.5% of the individuals clustered 
with other accessions; (2) the two bulks of 5 and 10 plants within an accession consistently clustered with the 15 
single plant samples in 95.6% of the 90 accessions; (3) θ and π computed as measures of genetic diversity within 
each accession were smaller than 0.06 in 81 of the 90 accessions, which suggests greater than expected intra-
accession diversity within 10% of the accessions; (4) there were highly comparable patterns of polymorphisms 
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(98.8–99.9%) among all datasets irrespective of the sampling methods (Supplementary Table S2); and (5) there 
were high to very high correlations among distance matrices computed from the different datasets generated 
for all 90 accessions, except for O. glaberrima (see below) when analyses were done on a priori known groups.

Although our genotypic data for the 5–15 individuals per accession did not provide strong justification for 
compensating the 4–14-fold increase in sample preparation and genotyping costs compared to using a single 
plant, we observed some level of disagreement between datasets within some accessions, which included O. gla-
berrima (1 accession), O. barthii (2 accessions), and O. sativa adapted to the lowland (6 accessions) and upland 
(7 accessions) ecologies. Pairwise differences among the multiple individuals of these accessions have been sum-
marized in Figs. 3, 4 and 5 and Supplementary Figs. S1-S2, which demonstrated a relatively larger intra-accession 
genetic diversity due to a few individuals that are equivalent to inter-accession diversity; this has also been seen 
in other studies of self-pollinated genebank  material5,19. In a genomic study of barley genebank accessions using 
GBS, there were 32 accessions represented by 10 individuals each that revealed varying degrees of intra-accession 
diversity. About 34% of the 32 barley accessions showed very little intra-accession diversity, while 16% showed an 
intra-accession divergence that was equivalent to inter-accession  diversity19. Using morphological and isozyme 
markers, intra-accessions genetic diversity has also been reported in another study of barley landraces conserved 
in genebanks for 10–72  years5. In most accessions, our results obtained from the two datasets corresponding to 
the 5 and 10 single plants were highly similar to those of the 15 individuals.

To capture the larger intra-accession diversity observed within some of the accessions, we recommend a single 
bulk of either 5 or 10 individuals instead of genotyping 5–15 plants individually per accession; this is evident 
from the very high positive correlations (0.871 ≤ r ≤ 0.995) between distance matrices computed from Set-2, Set-
3, Set-4, Set-11 and Set-12 (Supplementary Table S9). The genotyping cost of a bulk (of 5 or 10 plants) would 
be the same as a single individual and 4–14-fold cheaper than genotyping 5–15 plants individually (see below 
for details), but bulks should help capture more intra-accession diversity than a single plant. We recommend, 
however, that the bulks be made by pooling approximately equal leaf tissue from every individual and only use 
up to 15 plants per bulk in order not to dilute rare alleles when more plants are bulked per  accession38,45. O. 
glaberrima was the only exception that showed lower correlations between distance matrices computed from the 
5–15 individuals in Set-2, Set-11 and Set-12 vs. the bulks of 5 and 10 plants in Set-3 and Set-4 (0.477 ≤ r ≤ 0.690), 
which may either be due to the genetic background of this species and/or an ascertainment bias in the SNPs. 
Although ascertainment bias is minimal with genotyping by sequencing technologies, it may arise when marker 
data is not obtained from a random sample of the  polymorphisms71, which could occur in the current study due 
to the use of the O. sativa spp. japonica (cv. Nipponbare) reference genome for aligning marker sequences. Some 
level of ascertainment bias may have also been introduced by the Random  Forest46 imputation method used in 
this study, as has been reported in another study in  wheat72.

Genetic relationship and population structure. Overall, the different DNA sampling methods 
revealed very consistent patterns of genetic relationships, population structures, and genetic differentiation 
irrespective of species, genetic background, and predicted group memberships (Fig. 6, Supplementary Fig. S7, 
Fig. S8, Table S11, Table S12). However, there were some exceptions, including 3.5% of the individual samples 
that clustered together with other accessions of either the same or a different species and two O. barthii acces-
sions that showed an inconsistent pattern of clustering across datasets in the phylogenetic trees (Fig. 6, Sup-
plementary Fig. S7). The mis-clustered samples are likely outliers due to errors during seed handling, sample 
preparation and/or  genotyping17,26,37. Mislabeling, misclassification (misidentification), and mixing of samples 

Figure 8.  Frequency distribution categories of pairwise genetic distance between pairs of accessions computed 
from 11 datasets, each with 46,818 SNPs. See Supplementary Table S8 for details.
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are common problems in  genebanks15 and have been reported in several species, including multiple Oryza 
 species26,73,74, Dioscorea spp.75, Brassica spp 76. and Solanum spp.77. The percentage of mislabeled or misclassi-
fied samples reported in the literature is highly variable depending on sample size, the species, and the methods 
used for assessing the error rates, which varied from 3 to 21%26,73–77. In one of our recent studies, we found that 
3.1% of 3,134 of accessions from four rice species were either mislabeled or  misclassified26, which can easily be 
checked using a subset of the diagnostic SNPs that we developed in the previous study. Misclassification and 
mislabeling not only restrict the effective use of the germplasm for various purposes but also provide an errone-
ous estimate of intra-accession and inter-accession genetic diversity; in such cases, the presence of larger intra-
accession genetic diversity can be an indication of errors rather than genetics/biological.

Both Robinson-Foulds and SPR distances computed as measures of disagreements between a pair of phyloge-
nies revealed that the phylogenetic tree constructed from the 15 individuals in Set-2 had the highest concordance 
with those in Set-12 (RF = 0.15, SPR = 7), followed by Set-11 (RF = 0.37, SPR = 21). All other values suggest a low 
to moderate concordance among pairs of phylogenies (Supplementary Table S10). It should be noted, however, 
that the concordance among pairs of phylogenies may be confounded by multiple factors, including topological 
features (the number of shared/non-shared subtrees) between a pair of trees, path length information (finding 
the nearest neighbor interchange to transform one tree into another), edge weights, and branch  scores58,78–80, all 
of which are of little relevance in characterizing genebank collections. In germplasm characterization, phyloge-
netic trees are primarily used to understand the broader pattern of evolutionary relationships; the level of genetic 
divergence; the definition of groups (populations or sub-populations); the selection of subsets of accessions that 
capture the genetic variation of a given group; and the identification of potential duplicates. In such cases, it is 
often difficult for genetic resource scientists to determine the true historical relationships between any groups of 
accessions other than using the bootstrapping method for assessing the accuracy or confidence in phylogenetic 
 trees81. Although some studies advocate for bootstrapping, other studies believe that bootstrap values are a poor 
measure of  repeatability82 depending on (1) the methods used for computing similarity/dissimilarity matrices; (2) 
the algorithm/methodology implemented in constructing the phylogenetic trees and for assessing disagreements 
between pairs of  trees80, and (3) the lack of clear-cut threshold bootstrap values (which vary from 70 to 100%) that 
is used to judge whether a given node is good or not. Furthermore, displaying nodal support bootstrap values is 
difficult for large  datasets83,84, which are typical of large-scale germplasm curation and characterization studies.

cost and technical feasibility. The availability of high throughput and relatively low-cost NGS tech-
nologies have provided genebank researchers a better opportunity to explore the genetic potential of their 
 collections15. The current DNA extraction and genotyping cost of a single sample with DArTseq technology 
through a commercial vendor range from the US $22 to $30 per sample (the actual cost depends on sample 
size), which returns between 22,000 to 47,000 polymorphic SNPs in rice. A small sample size can underestimate 
genetic diversity parameters, and excessive sampling inflates  costs2. Sampling 5–15 plants per accession instead 
of one provides more intra-accession information, but it does inflate sampling, DNA extraction, and genotyping 
cost 4–14-fold. In the present study, for example, genotyping of 5, 10, and 15 individuals incurred an additional 
cost per accession of US $88, $198, and $308, respectively. Currently, the AfricaRice genebank holds 21,300 
accessions (https ://www.genes ys-pgr.org/), which would cost ~ US $2.4 and $7.1 million for genotyping 5 and 15 
individuals per accession, respectively, compared to $468,600 for genotyping either a single individual or a bulk. 
Because we arrived at broadly similar conclusions regardless of sampling methods for most applications, we do 
not believe the additional information obtained by genotyping 5–15 individuals justify the multi-fold increase 
in cost. Furthermore, sampling of 5–15 individuals per accession across thousands of accessions raises another 
concern in that the technical feasibility of sampling, processing, and tracking so many individuals, followed by 
managing the high-density genotypic data, will be extremely  challenging85–87. Recently, our team genotyped 
4,115 rice accessions with ~ 32,000 SNPs using DArTseq, which generated 650-megabytes of data. If each acces-
sion had been represented by 5–15 individuals, the total number of samples would have been 21–62 thousands 
and approximately 3.2–9.8 gigabytes of data, and data analysis with existing statistical programs would have 
been extremely challenging. Genotyping of all 21,300 accessions with 5–15 individuals could lead to a daunting 
file size of 16.8 to 50.5-gigabytes.

conclusions
Using high-density DArTseq genotype data generated with the Illumina NGS technology, we assessed six leaf 
(DNA) sampling methods to determine if an obvious advantage in genotyping multiple individuals per accessions 
existed to justify the multi-fold increase in cost and technical complexity of handling/managing large number 
of samples per accession as compared to genotyping either a randomly selected individual or a bulk. Overall, we 
arrived at broadly similar conclusions in terms of overall SNPs polymorphism and heterozygosity/heterogeneity; 
molecular diversity indices within and between accessions and groups; the genetic dissimilarity between acces-
sions and groups; population structure; and genetic differentiation. Genotyping 5–15 individuals per accession 
provided better information for understanding not only the level of intra-accession genetic diversity but also for 
detecting outliers over genotyping a randomly selected individual; however, the additional information obtained 
was not enough to justify the 4–14-fold increase in cost and technical challenges in managing the large-sample 
size associated with genebank genomics studies. Both Robinson-Foulds and SPR distances computed as meas-
ures of disagreements between a pair of phylogenies revealed that the phylogenetic tree constructed from the 
15 individuals in Set-2 had the highest concordance with those in Set-12 (10 individuals), followed by Set-11 
(5 individuals), suggesting that at least 5–10 plants should be genotyped per accession individually or in a bulk. 
Furthermore, the identification of suspected outliers in 26 of the 90 accessions, which accounted for 3.5–10.0% 
of the single DNA samples in Set-2, lead us to recommend genotyping of 5–10 plants individually or in a bulk 

https://www.genesys-pgr.org/
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instead of a single individual per accession. Results from this study provide highly useful information to other 
researchers involved in genetic resources characterization using genebank genomics.

Data availability
All relevant data are within the paper and its Supporting Information Files.
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