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Abstract
Key message The extent of molecular diversity parameters across three rice species was compared using large germ-
plasm collection genotyped with genomewide SNPs and SNPs that fell within selective sweep regions.
Abstract Previous studies conducted on limited number of accessions have reported very low genetic variation in African 
rice (Oryza glaberrima Steud.) as compared to its wild progenitor (O. barthii A. Chev.) and to Asian rice (O. sativa L.). 
Here, we characterized a large collection of African rice and compared its molecular diversity indices and population 
structure with the two other species using genomewide single nucleotide polymorphisms (SNPs) and SNPs that mapped 
within selective sweeps. A total of 3245 samples representing African rice (2358), Asian rice (772) and O. barthii (115) 
were genotyped with 26,073 physically mapped SNPs. Using all SNPs, the level of marker polymorphism, average genetic 
distance and nucleotide diversity in African rice accounted for 59.1%, 63.2% and 37.1% of that of O. barthii, respectively. 
SNP polymorphism and overall nucleotide diversity of the African rice accounted for 20.1–32.1 and 16.3–37.3% of that of 
the Asian rice, respectively. We identified 780 SNPs that fell within 37 candidate selective sweeps in African rice, which 
were distributed across all 12 rice chromosomes. Nucleotide diversity of the African rice estimated from the 780 SNPs was 
8.3 × 10−4, which is not only 20-fold smaller than the value estimated from all genomewide SNPs (π = 1.6 × 10−2), but also 
accounted for just 4.1%, 0.9% and 2.1% of that of O. barthii, lowland Asian rice and upland Asian rice, respectively. The 
genotype data generated for a large collection of rice accessions conserved at the AfricaRice genebank will be highly useful 
for the global rice community and promote germplasm use.

Introduction

Rice (Oryza L.) is one of the top three food crops in the 
world, ranked second in total area harvested and production 
per hectare and third in total global production after maize 
and wheat (http://www.fao.org/faost at/en/#data; accessed 
in Dec. 2018). The genus Oryza consists of 27 species and 
11 genome types (Stein et al. 2018). Eight species encom-
passing five genomes are found on the African continent, 
which include the AA (Oryza barthii A. Chev., O. glaber-
rima Steud., O. sativa L., and Oryza longistaminata Chev. 
and Röhr), BB (O. punctata), CC (O. eichingeri), FF (O. 
brachyantha) and BBCC (O. schweinfurthiana) genome spe-
cies (Vaughan et al. 2003). All these species are conserved 
at the AfricaRice genebank, each with a varying number 
of accessions ranging from few to several thousands. Of 
all the ~ 22,000 registered rice samples conserved at the 
AfricaRice genebank, about 14% belong to African rice (O. 
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glaberrima), 85% to Asian rice (O. sativa) and 1% of the 
other wild species.

African and Asian rice have been shown to be indepen-
dently domesticated from the wild species of O. barthii in 
Africa and O. rufipogon in Asia, respectively (Wang et al. 
2014). Recent studies of the genetic variation, relatedness 
and population structure of 2179 African rice accessions 
indicated that overall level of polymorphism and genetic dis-
tance between pairs of accessions observed across this large 
number of samples were very low (Ndjiondjop et al. 2017). 
Other studies compared the extent of genetic variation of 
African rice using whole genome sequencing and targeted 
sequencing of a few genes that have undergone selection (Li 
et al. 2011; Nabholz et al. 2014; Wang et al. 2014; Meyer 
et al. 2016; Win et al. 2017; Cubry et al. 2018; Lv et al. 
2018) and reported very low genetic variation in African rice 
as compared to Asian rice and to its wild progenitor O. bar-
thii. Results of the gene-based sequencing studies suggest a 
strong domestication bottleneck, while those of genomewide 
studies suggested the role of both genetic bottleneck and 
selective sweeps as the main factors for the lower genetic 
diversity observed in the cultivated African rice compared to 
its wild progenitor (Vaughan et al. 2008). However, all previ-
ous studies that compared the extent of nucleotide diversity 
and effect of selective sweeps in African rice and O. barthii 
were based on small number of accessions, ranging from 9 
to 163 and from 10 to 88 samples, respectively. Nucleotide 
diversity in such a small sample may be depressed more 
based on the sample size itself, than on evolutionary forces 
acting on the entire species, which forms one of the bases 
of this study.

Selection (selective) sweeps, which refer to a reduction 
in nucleotide diversity near advantageous mutations in use-
ful genes, leave distinct signatures in genomes; this enables 
the detection of loci that have undergone positive selection 
(Peter et al. 2012; Chen et al. 2016; Alachiotis and Pav-
lidis 2018). Positive selection increases the frequency of a 
beneficial allele within a population and may even lead to 
fixation. While this process increases fitness of the individu-
als carrying the beneficial allele, it reduces overall genetic 
diversity in a population or species until recombination and 
mutation introduce new alleles in these selected regions 
(Olsen et al. 2006; Vitti et al. 2013; Alachiotis and Pavlidis 
2016). For some time, however, the selected alleles are pre-
sent at high frequency, while the newly introduced alleles (or 
residual, less beneficial alleles) are found at low frequency, 
and may remain so unless they are neutral or beneficial in 
effect. Using data from small number of samples, several 
studies reported a reduction in genetic diversity in domesti-
cated (cultivated) crops as compared to their wild progeni-
tors (Reif et al. 2005; Wright et al. 2005; Gore et al. 2009; 
Lam et al. 2010; Ding et al. 2011; Huang et al. 2012; Yuan 
et al. 2017), but those results may also be biased by samples 

sizes. Thus, assessment of the level of nucleotide diversity in 
large number of individuals using both genomewide markers 
and a subset of markers that physically map within selec-
tive sweep regions would provide confidence, which forms 
another basis of this study.

A wide range of statistical methods have been used to 
identify traces of intra-species selective sweeps by detecting 
regions of reduced genetic variation, which have undergone 
a selective sweep (Crisci et al. 2013; Alachiotis and Pavlidis 
2016; Pavlidis and Alachiotis 2017). Using simulated data, 
Crisci and colleagues evaluated SweepFinder (Nielsen et al. 
2005), SweeD (Pavlidis et al. 2013), OmegaPlus (Alachiotis 
et al. 2012) and iHS (Voight et al. 2006) in terms of effi-
ciency on type I and II errors, effect of population structure 
and size and genome coverage. Overall, OmegaPlus per-
formed better than the other three methods. In the present 
study, we used DArTseq genotyping of 3245 samples repre-
senting African rice, Asian rice and O. barthii to (1) identify 
genomic regions that have undergone selective sweeps in 
African rice and examined if those selective sweeps showed 
greater reduction in nucleotide diversity in African rice as 
compared with its wild relative O. barthii and Asian rice and 
(2) compare the extent of genetic relatedness and population 
structure of the three rice species using genomewide SNPs.

Materials and methods

This study was conducted on a total of 3245 accessions and 
varieties (hereafter referred to as samples) conserved at the 
AfricaRice genebank (Supplementary Table S1), which rep-
resent O. barthii (115 samples), African rice (2358 samples) 
and Asian rice (772 samples). About 92% of the African rice 
(Ndjiondjop et al. 2017) and 43% of the Asian rice (Ndjiond-
jop et  al. 2018a) samples had been previously used for 
genetic diversity and population structure studies conducted 
within each species. Nearly, all samples had also been used 
for identification of species- and subspecies-diagnostic SNPs 
for routine genotyping quality control analysis to minimize 
errors during germplasm collection, acquisition and routine 
genebank operations (Ndjiondjop et al. 2018b). The detailed 
procedures for genomic DNA extraction and SNP genotyp-
ing using DArTseq™ were described in our previous study 
(Ndjiondjop et al. 2017). Each sample was genotyped with 
31,739 SNPs by DArT Pty Ltd, Australia (http://www.diver 
sitya rrays .com) of which 26,073 SNPs (Dataset-1) were 
physically mapped on to the 12 rice chromosomes and had 
two alleles each irrespective of their minor allele frequency 
(Table 1). SNPs that were not physically mapped (5606 
SNPs) or SNPs that were physically mapped but were com-
pletely monomorphic across all samples (60 SNPs) were 
excluded from all statistical analyses. Of the 26,073 SNPs 
in Dataset-1, nearly 89% (23,079 SNPs) were polymorphic 
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across all 3245 samples (Dataset-2), each having a minor 
allele frequency ranging from 0.01 to 0.496 (Supplementary 
Table S2).

Hapmap input files from TASSEL v.5.2.48 were exported 
to PHYLIP interleaved format, which were then converted 
to both MEGA X (Kumar et al. 2016) and ARLEQUIN 
v.3.5.2.2 (Excoffier and Lischer 2010) formats using PGD-
Spider (Lischer and Excoffier 2012). We used MEGA X 
(Kumar et al. 2016) to estimate number of segregating sites, 
proportion of polymorphic sites (Ps), Theta (θS), nucleotide 
diversity (θπ) and Tajima’s D test statistic (Tajima 1989). 
Tajima’s D was used to test the null hypothesis of selec-
tive neutrality in each species and groups observed within 
species. To assess the effect of sample size on molecular 
diversity indices of African rice, we conducted the analy-
ses on (1) a minicore of 350 accessions (Ndjiondjop et al. 
2017); (2) subsets of 115 and 163 randomly chosen acces-
sions from the 350 minicore set to get the same sample size 
as the O. barthii used in the current study and that of a recent 
study (Cubry et al. 2018), respectively, and (3) randomly 
selected samples of 115 African rice accessions to get the 
same number of samples as that of O. barthii in the present 
study, which was repeated 20 times. Finally, two additional 
analyses were also run on two sample sizes of 983 and 1375 
African rice accessions proposed based on neighbor-joining 
cluster and principal component analyses (Supplementary 
Fig. S1).

OmegaPlus v.3.0.2 (Alachiotis et al. 2012) was used to 
detect selective sweeps that may have undergone positive 
selection by dividing Dataset-1 into four subsets that cor-
responded to African rice, O. barthii, lowland O. sativa, 
which are primarily indica, and upland O. sativa, which 
are primarily japonica. O. sativa samples were divided 
into lowland and upland ecologies for some statistical 
analyses due to the distinct population structure observed 
between these two ecological groups based on results from 
neighbor-joining cluster analysis (Supplementary Fig. S2) 
and principal component analysis (Fig. 1). Each subset 
of data for OmegaPlus was then converted into reference 
and alternative alleles using the variant call format (VCF) 
file conversion option in TASSEL v.5.2.48, which refers 
to the major and minor alleles, respectively. OmegaPlus 
v.3.0.2 was separately executed on each subset of data 
as described in a previous study (Alachiotis and Pavlidis 
2016), evaluating a grid of 10,000 equidistant physical 
locations along each subset (Alachiotis and Pavlidis 2018). 
The average distance between any two consecutive loca-
tions was 3105 bp, while each score computation entails 
the exhaustive evaluation of 1-Mb overlapping windows. 
The threshold score for declaring selective sweeps to be 
significant was set as the 99th percentile, so the 1% with 
the highest scores was retained to represent a candidate 
selective sweep region. Two or more selective sweeps 

with an overlapping start and/or end position were con-
sidered the same candidate selective sweep. To minimize 
the length of the manuscript, only peaks (1) that were spe-
cific to African rice, (2) had at least three adjacent SNPs 
within the start and end positions (interval), and (3) had 
likelihood test scores greater than the minimum threshold 
value were chosen for further analyses. The start and end 
physical positions of each selective sweep region were 
used to search for candidate genes at the Gramene Genome 
Brower (http://ensem bl.grame ne.org/genom e_brows er/
index .html).

Additional subsets of genotypic data consisting of all 
SNPs that mapped across all selective sweeps detected in 
African rice (Dataset-3), O. barthii (Dataset-4), lowland O. 
sativa (Dataset-5) and upland O. sativa (Dataset-6) were 
also used to compute nucleotide diversity in MEGA X 
(Kumar et al. 2016). Identity-by-state (IBS)-based genetic 
distance matrix, neighbor-joining cluster analysis, princi-
pal component analysis (PCA), analysis of molecular vari-
ance (Excoffier et al. 1992) and  FST-based pairwise genetic 
distance matrices (Holsinger and Weir 2009) were con-
ducted by filtering the genotypic data with a minor allele 
frequency (MAF) of ≥ 0.01 as described in our previous 
papers (Ndjiondjop et al. 2017, 2018a). The genotypic data 
used for these analyses include the 23,079 SNPs in Dataset-2 
plus other species and group-specific genotypic files created 
from Dataset-1 by filtering with MAF of ≥ 0.01.
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Fig. 1  Plot of PC1 and PC2 from principal component analysis of 
3245 samples representing Oryza glaberrima (2358), O. barthii (115) 
and O. sativa (772) using 23,079 polymorphic SNPs. As only 14.4% 
of the 23,079 SNPs were polymorphic between O. barthii and O. gla-
berrima, these two species appeared nearly identical, while O. sativa 
genotypes showed clear separation into upland (218) and lowland 
(554) ecologies
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Results

Test for selective neutrality and detection 
of selective sweeps

Table 2 summarizes the different evolutionary parameters 
estimated across the three species. Tajima’s D value com-
puted from the 26,073 SNPs in Dataset-1 was positive in 
the wild O. barthii (0.219), but negative in the cultivated 
African (− 1.381) and Asian rice (− 0.257 for lowland 
and − 1.513 for upland O. sativa). The negative Tajima’s 
D values observed in the two cultivated rice species are 
indicative of positive selection and reject the null hypoth-
esis that all mutations are selectively neutral. Using Omeg-
aPlus, we identified a total of 37 candidate selective sweep 
regions in African rice (Fig. 2), 89 regions in lowland 
Asian rice and 68 regions in upland Asian rice (Table 3, 
Supplementary Fig. S3). The candidate selective sweeps 
detected in African rice spanned from 28 to 850 kb and 
consisted of clusters of markers that varied from 11 to 74 
SNPs (Supplementary Table S3); the number of selective 
sweeps detected per chromosome ranged from 1 on chro-
mosome 3 to 6 on chromosome 2 (Table 3). Overall, there 
were a total of 780 SNPs that mapped within the 37 candi-
date selective sweeps detected in African rice (Dataset-3). 
Only four of the 780 SNPs had MAF ≥ 0.01 in African 
rice as compared to 88 SNPs in O. barthii, 419 SNPs in 
lowland Asian rice and 275 SNPs in upland Asian rice 
(Supplementary Table S2). Selective sweeps increase the 
frequency of beneficial alleles and surrounding variants 
and may eventually lead to fixation, and recombination 
and mutation that introduce new alleles are rare (causing 
alleles of very low frequency), which are evident in Sup-
plementary Table S2.

Selective sweeps were more common in Asian rice 
than in African rice (Table 3). Each selective sweep iden-
tified in lowland and upland Asian rice spanned from 55 
to 771 kb and from 47 to 1045 kb, respectively, and har-
bored clusters of SNPs ranging from 6 to 54 and from 
10 to 76 markers (Supplementary Table S3). Five of the 
89 selective sweeps identified in lowland Asian rice (3: 
17,580,209–17,811,736, 5: 15,191,088–15,198,145, 7: 
7,420,481–7,526,572, 9: 15,703,948–16,396,541 and 
11: 16,030,588–16,164,430) and seven of the selective 
sweeps in upland Asian rice (1: 4,537,132–4,724,160, 
2: 6,069,007–6,374,310, 2: 21,994,604–22,316,127, 8: 
23,755,429–23,755,429, 9: 15,547,000–15,556,789, 11: 
442,387–442,387 and 11: 22,278,851–22,445,600) were 
partial overlapping with selective sweeps detected in 
African rice (Supplementary Tables S2, S3). Although 
the positive Tajima’s D value in O. barthii supports 
the null hypothesis of selective neutrality, results of 

OmegaPlus revealed 36 selective sweeps in this wild spe-
cies of which six regions (3: 17,716,633–17,811,736, 
5: 13,940,602–14,087,325, 9: 16,021,480–16,396,541, 
10: 3,705,613–3,806,404, 11: 442,387–595,142 and 11: 
22,228,554–22,267,775) were shared with those detected 
in African rice (Supplementary Tables S2, S3). Overall, 
we identified a total 1353 SNPs, 1426 SNPs and 1421 
SNPs that fell within the selective sweeps detected in O. 
barthii, lowland and upland Asian rice, respectively, which 
were used for computing molecular diversity indices (see 
below).

Candidate genes in selective sweeps detected 
in African rice

To gain insight into possible roles of each selective sweep 
in African rice, we compiled a list of 901 protein coding 
candidate genes found within the 37 selected regions (Sup-
plementary Table S4). There were two to ninety-two genes 
per selective sweep region of which some had known func-
tions, descriptions of which can be found in Supplementary 
Table S3. As shown in the Manhattan plot in Fig. 2, the high-
est test scores (1.0 × 105–28.6 × 105) were observed in 850 kb 
interval on chromosome 9 (9: 15,547,000–16,396,541). This 
region harbored clusters of 87 protein coding genes (Sup-
plementary Table S4), including DEEPER ROOTING 1 
(DRO1), that play role for adapting to the dry sub-Saharan 
region and DELAYED SEED GERMINATION 1 (OsDSG1) 
that prevent germination when there is insufficient moisture 
in the soil and under storage conditions. The role of other 
candidate genes with known function has been summarized 
in Supplementary Table S3 and described in detail in the 
discussion section.

Molecular diversity indices

Of the 26,073 SNPs in Dataset-1, the number of segregat-
ing sites (6843) and proportion of polymorphic sites (0.262) 
in African rice were nearly 20% greater than those of O. 
barthii, but 64.2% and 46.3% smaller than those of the low-
land and upland Asian rice, respectively (Table 2). Theta 
(ϴ) in African rice was 0.031, which is 76.7% of that of 
O. barthii (0.041), 29.6% of the lowland and 38.4% of the 
upland Asian rice. Nucleotide diversity (π) in African rice 
was 0.016, which accounted for 37.1%, 16.7% and 37.3% of 
the values observed in O. barthii (0.044), lowland (0.097) 
and upland (0.043) Asian rice, respectively. The number of 
segregating sites, proportion of polymorphic sites and ϴ and 
π values computed from the 23,079 SNPs in Dataset-2 that 
were polymorphic across all 3245 samples at a MAF ≥ 0.01 
were similar to that of Dataset-1.

Using genotype data of the 780 SNPs (Dataset-3) that 
fell within the 37 selective sweeps detected in African rice, 
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Table 2  Summary of the 
molecular diversity indices of 
three rice species based on six 
datasets of different marker 
density

Species and  dataseta Results from Tajima’s neutrality  testb

m S Ps θS θπ D

All O. glaberrima
 Dataset-1 2358 6843 0.262 0.031 0.01620 − 1.381
 Dataset-2 2358 6057 0.262 0.031 0.01806 − 1.213
 Dataset-3 2358 158 0.203 0.024 0.00083 − 2.641
 Dataset-4 2358 320 0.272 0.033 0.01247 − 1.725
 Dataset-5 2358 416 0.292 0.035 0.02194 − 1.045
 Dataset-6 2358 374 0.263 0.032 0.01391 − 1.565

Group-1 O. glaberrima
 Dataset-1 983 4427 0.170 0.023 0.01425 − 1.101
 Dataset-2 983 4108 0.178 0.024 0.01592 − 0.979
 Dataset-3 983 76 0.097 0.013 0.00070 − 2.598
 Dataset-4 983 204 0.174 0.023 0.01378 − 1.169
 Dataset-5 983 261 0.183 0.025 0.01866 − 0.690
 Dataset-6 983 246 0.173 0.023 0.01423 − 1.115

Group-2 O. glaberrima
 Dataset-1 1375 5414 0.208 0.027 0.01499 − 1.270
 Dataset-2 1375 4834 0.209 0.027 0.01664 − 1.106
 Dataset-3 1375 106 0.136 0.017 0.00089 − 2.612
 Dataset-4 1375 244 0.208 0.027 0.00944 − 1.832
 Dataset-5 1375 354 0.248 0.032 0.02054 − 1.014
 Dataset-6 1375 285 0.201 0.026 0.01176 − 1.546

Minicore O. glaberrima
 Dataset-1 350 4664 0.179 0.028 0.01870 − 1.020
 Dataset-2 350 4061 0.176 0.027 0.02066 − 0.763
 Dataset-3 350 78 0.100 0.016 0.00106 − 2.733
 Dataset-4 350 198 0.169 0.026 0.01473 − 1.331
 Dataset-5 350 294 0.206 0.032 0.02453 − 0.719
 Dataset-6 350 265 0.186 0.029 0.01720 − 1.244

Subset of minicore O. glaberrima
 Dataset-1 163 4114 0.158 0.028 0.01948 − 0.986
 Dataset-2 163 3632 0.157 0.028 0.02147 − 0.744
 Dataset-3 163 54 0.069 0.012 0.00132 − 2.716
 Dataset-4 163 179 0.152 0.027 0.01655 − 1.232
 Dataset-5 163 265 0.186 0.033 0.02544 − 0.724
 Dataset-6 163 231 0.163 0.029 0.01809 − 1.190

Subset of minicore O. glaberrima
 Dataset-1 115 3904 0.150 0.028 0.02006 − 0.971
 Dataset-2 115 3491 0.151 0.028 0.02211 − 0.751
 Dataset-3 115 54 0.069 0.013 0.00162 − 2.756
 Dataset-4 115 174 0.148 0.028 0.01790 − 1.180
 Dataset-5 115 244 0.171 0.032 0.02622 − 0.615
 Dataset-6 115 218 0.153 0.029 0.01872 − 1.164

O. barthii
 Dataset-1 115 5685 0.218 0.041 0.04366 0.219
 Dataset-2 115 4919 0.213 0.040 0.04396 0.326
 Dataset-3 115 108 0.138 0.026 0.02020 − 0.731
 Dataset-4 115 254 0.216 0.041 0.02258 − 1.478
 Dataset-5 115 370 0.259 0.049 0.05148 0.184
 Dataset-6 115 317 0.223 0.042 0.04903 0.563
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we compared the changes in nucleotide diversity across 
the three species. Nucleotide diversity in African rice was 
8.3 × 10−4, which accounted for just 4.1% of that of O. 

a Number of sequences or sample size (m); number of segregating sites (S); proportion of polymorphic sites 
(Ps) = S/n); θS = Ps/a1; nucleotide diversity (θπ); Tajima test (D)
b Dataset-1 = 26,073 SNPs; Dataset-2 = 23,079 SNPs; Dataset-2 = 780 SNPs; Dataset-4 = 1175 SNPs; Data-
set-5 = 1426 SNPs; Dataset-6 = 1421 SNPs. See Table 1 for details

Table 2  (continued) Species and  dataseta Results from Tajima’s neutrality  testb

m S Ps θS θπ D

O. sativa spp. indica (lowland)
 Dataset-1 554 19,090 0.732 0.106 0.09722 − 0.257
 Dataset-2 554 17,327 0.751 0.109 0.10654 − 0.066
 Dataset-3 554 585 0.750 0.109 0.08782 − 0.581
 Dataset-4 554 819 0.697 0.101 0.09336 − 0.232
 Dataset-5 554 856 0.600 0.087 0.06371 − 0.810
 Dataset-6 554 1015 0.714 0.104 0.09803 − 0.163

O. sativa spp. japonica (upland)
 Dataset-1 218 12,734 0.488 0.082 0.04340 − 1.513
 Dataset-2 218 12,066 0.523 0.088 0.04751 − 1.474
 Dataset-3 218 398 0.510 0.086 0.04041 − 1.679
 Dataset-4 218 607 0.517 0.087 0.04355 − 1.588
 Dataset-5 218 604 0.424 0.071 0.04088 − 1.356
 Dataset-6 218 426 0.299 0.050 0.01159 − 2.447

Both lowland and upland O. sativa
 Dataset-1 772 20,642 0.792 0.110 0.17332 − 5.807
 Dataset-2 772 18,763 0.813 0.113 0.19298 − 6.165
 Dataset-3 772 654 0.838 0.116 0.18026 1.639
 Dataset-4 772 910 0.774 0.107 0.17936 1.999
 Dataset-5 772 961 0.674 0.093 0.13485 1.324
 Dataset-6 772 1067 0.751 0.104 0.15331 1.413

Fig. 2  Manhattan plots showing selective sweep regions detected in 
African rice (O. glaberrima). The horizontal solid line indicates the 
threshold value for declaring candidate selective sweeps (see material 
and method section for details)

Table 3  Chromosomal distribution of number of selective sweep 
regions identified in three rice species

Chromosome O. glaberrima Lowland 
O. sativa

Upland 
O. sativa

O. barthii

1 3 11 8 6
2 6 11 6 1
3 1 15 5 2
4 2 9 10 3
5 4 5 8 3
6 5 10 4 2
7 3 8 4 1
8 2 2 3 1
9 2 4 10 2
10 2 3 5 4
11 3 5 3 6
12 4 6 2 5
Grand total 37 89 68 36
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barthii, 0.9% and 2.1% of the lowland and upland Asian 
rice, respectively (Table 2). On the other hand, nucleotide 
diversity of the African rice computed from SNPs that fell 
within the selective sweeps identified in O. barthii (Data-
set-4) and lowland Asian rice (Dataset-5) accounted for 
55.2% and 34.4% of that of O. barthii and lowland Asian 
rice, respectively, which are even higher than the values 
obtained from the entire 26,073 SNPs in Dataset-1. These 
results demonstrate a more severe reduction in genetic vari-
ation in African rice due to selective sweeps detected in this 
species than the selective sweeps detected in the other two 
species. The nucleotide diversity of African rice as calcu-
lated from SNPs in selective sweeps identified in upland 
Asian rice (Dataset-6) was sevenfold greater than the value 
obtained in Dataset-3, but smaller than that of Dataset-1. 
The latter is not surprising due to not only much smaller 
Tajima D value observed in upland than the lowland Asian 
rice (Table 2), but also the presence of more common selec-
tive sweeps between the African rice and the upland Asian 
rice (Supplementary Table S2). Both African rice and O. 
barthii showed reduction in nucleotide diversity in Dataset-3 
than Dataset-1, but the reduction in the former was 19-fold 
(π = 1.6 × 10−2 in Dataset-1 vs. 8.3 × 10−4 in Dataset-3) as 
compared to just twofold in O. barthii (π = 4.4 × 10−2 in 
Dataset-1 vs. 2.0 × 10−2 in Dataset-3). On the contrary, the 
changes in nucleotide diversity in lowland and upland Asian 
rice were very minimal irrespective of the datasets; the only 
exceptions were Dataset-5 in the lowland Asian rice and 
Dataset-6 in the upland Asian rice that showed about from 
two to threefold smaller nucleotide diversity values as com-
pared to the whole 26,073 SNPs.

To assess the effect of sample size on the molecular diver-
sity indices in African rice, we repeated the analyses on five 
additional samples sizes (N = 115, 163, 350, 983 and 1375) 
using the 26,073 SNPs. Nucleotide diversity of African rice 
computed from these five smaller sample sizes accounted 
from 30.5 to 45.9% of that of O. barthii, from 13.5 to 20.6% 
of that of lowland Asian rice and from 30.1 to 46.2% of that 
of upland Asian rice (Table 2, Supplementary Table S5). 
Overall, nucleotide diversity values estimated from smaller 
sample sizes showed an increase or decrease up to 8.9% as 
compared to the entire 2358 accessions; hence, the severe 
reduction in nucleotide diversity observed in African rice 
than both its wild progenitor and Asian rice was very con-
sistent irrespective of sample size (Supplementary Fig. S4) 
and marker density.

Genetic relatedness and population structure

Genetic distance between pairs of all 3245 samples com-
puted from the 23,079 SNPs that were polymorphic with a 
MAF ≥ 0.01 in Dataset-2 varied from 0.001 to 0.662, with 
an overall average of 0.243 (Supplementary Table S6). 

Nearly 56% of the pairs of samples differed by just < 5% of 
the scored alleles. All pairs of African rice samples, 50.2% 
of the O. barthii pairs and 5.2% of Asian rice pairs differed 
by < 5% of the alleles. Approximately 36% of the pairs of 
samples differed by more than 50% of the alleles in Data-
set-2 which was due to greater distance among pairs of sam-
ples belong to different species. Neighbor-joining tree con-
structed from the genetic distance matrix of all 3245 samples 
showed three major groups (Supplementary Fig. S2). The 
first group consisted of all samples belonging to the African 
rice and O. barthii. The second and third groups consisted 
of all Asian rice samples adapted to the lowland (which are 
primarily indica) and the upland (primarily japonica) ecolo-
gies in Africa, as summarized in Supplementary Table S1. 
The first two principal components from PCA performed 
across all three species accounted for 84.7% of the molecular 
variation observed across the 3245 samples. A plot of PC1 
(74.3%) and PC2 (10.4%) showed clear population structure 
in the same way as the neighbor-joining analysis (Fig. 1).

We then performed separate analyses on genotypic 
data of each species to get a better insight into the extent 
of genetic variation among accessions belonging to each 
species. Among the 26,073 SNPs in Dataset-1, the number 
of SNPs that were polymorphic within each species (at a 
MAF ≥ 0.01) was 10.9% (2840 SNPs) in African rice, 18.4% 
(4807 SNPs) in O. barthii, 54.1% in lowland Asian rice and 
34.0% in upland Asian rice (Table 1). The proportion of 
polymorphism in African rice accounted for 59.1%, 20.1% 
and 32.1% of the polymorphism observed within O. barthii, 
lowland and upland Asian rice, respectively. Genetic dis-
tance estimated from SNPs that were polymorphic within 
each species/group varied from 0.004 to 0.308 in African 
rice, from 0.011 to 0.349 in O. barthii, from 0.013 to 0.466 
in lowland Asian rice and from 0.018 to 0.416 in upland 
Asian rice (Supplementary Table S7). In African rice, the 
genetic distance values for about 78% and 12% of the pairs 
of accessions varied from 0.101 to 0.200 and from 0.201 to 
0.300, respectively, with none of the pairs having a genetic 
distance exceeding 0.308. On the contrary, approximately 
22%, 50% and 24% of the pairs of O. barthii accessions had 
genetic distance values ranging from 0.101 to 0.200, from 
0.201 to 0.300 and from 0.301 to 0.400, respectively (Fig. 3, 
Supplementary Table S7).

The overall average distance observed within African 
rice (0.152) accounted for 63.1% and 80.0% of the aver-
age distance observed in O. barthii (0.241) and lowland 
Asian rice (0.190), respectively, but it was 12.6% greater 
than that of upland Asian rice (0.135) (Supplementary 
Table S7). The phylogenetic tree constructed from the 
genetic distance matrix computed from 3484 SNPs that 
were polymorphic in both African rice and O. barthii 
showed three major groups, with the African rice samples 
partitioned into six subgroups (Supplementary Fig. S5). 
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Plots of PC1 and PC2 from PCA (Supplementary Fig. S6) 
showed similar pattern as the cluster analysis. Detailed 
results of 2179 of the 2358 (94.4%) African rice samples 
have been presented in our previous study (Ndjiondjop 
et al. 2017). The addition of 179 African rice samples 
and the inclusion of the O. barthii samples changed the 
overall results only a little. The partitioning of the over-
all molecular variance (AMOVA) into four hierarchical 
levels corresponding to African rice, O. barthii, lowland 
Asian rice and upland Asian rice revealed that differences 
among groups accounted for 92.4% of the total variation 
(Table 4). Pairwise FST computed for African rice against 
O. barthii, lowland Asian rice and upland Asian rice was 
0.276, 0.939 and 0.964, respectively. FST values between 
O. barthii vs. lowland, O. barthii vs. upland and lowland 
vs upland Asian rice were 0.844, 0.919 and 0.0.7389, 
respectively.

Discussion

Genetic relatedness, sample sizes 
and misclassification

Details comparing genetic distance, relatedness and pop-
ulation structure within African rice and Asian rice have 
already been presented in our previous studies (Ndjiondjop 
et al. 2017, 2018a). The primary focus of the present study 
was to compare marker polymorphism, nucleotide diversity, 
genetic relatedness and population structure among the three 
AA-genome rice species using DArTseq-based genomewide 
SNPs and SNPs that fell within selective sweeps identified 
in African rice. Polymorphism levels (Table 1), nucleotide 
diversity (Table 2) and genetic distances (Supplementary 
Table S7) in African rice were all greatly reduced compared 
to O. barthii, which are consistent with previous studies 
irrespective of marker types and density (Joshi et al. 2000; 
Ishii et al. 2001; Park et al. 2003; Semon et al. 2005; Kwon 
et al. 2006; Li et al. 2011; Orjuela et al. 2014; Wang et al. 
2014; Meyer et al. 2016; Ndjiondjop et al. 2017). The lower 
genetic distance values among most pairs of African rice 
samples were also evident in both phylogenetic tree (Sup-
plementary Fig. S2) and PCA plot (Fig. 1); these plots of 
genetic structure and relationships also agree with previ-
ous studies (Li et al. 2011; Orjuela et al. 2014; Cubry et al. 
2018). Orjuela et al. (2014) found two subgroups for African 
rice and three subgroups for O. barthii primarily based on 
geography and that African rice and O. barthii were closer 
together than either of them compared to Asian rice. Wang 
et al. (2014) found five groups and that all O. barthii and 
African rice accessions from Gambia, Guinea, Senegal 
and Sierra Leone formed two admixture groups (OB-V and 
OB-IV), whereas the other accessions sampled outside the 
domestication center formed three additional groups. In the 
current study, we found six groups of African rice and that 
the group membership of the O. barthii samples generally 
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All three species (N=3,245)

O. glaberrima (N=2,358)

O. barthii (N=115)

Lowland O. sativa (N=554)

Upland O. sativa (N=218)

All O. sativa (N=772

Fig. 3  Genetic distance summaries between pairs of 3245 samples 
computed from SNPs that were polymorphic across all three species 
(23,079 SNPs), O. glaberrima (2840 SNPs), O. barthii (4807 SNPs), 
lowland O. sativa (14,106 SNPs) and upland O. sativa (8860 SNPs). 
The number of samples is shown in the legend within brackets

Table 4  Analysis of molecular variance (AMOVA) for the extraction of SNP variation among and within groups (populations)

Category No. of SNPs 
used for analysis

Source of variation d.f. Sum of squares Variance 
components

Percentage 
of variation

Four groups (O. glaberrima, O. barthii, 
lowland O. sativa and upland O. sativa)

23,079 Among groups 3 7,600,354.2 5358.1 92.8
Within groups 3241 1,347,725.3 415.8 7.2
Total 3244 8,948,079.4 5774.0 100.0

Two groups (O. glaberrima and O. barthii) 23,079 Among groups 1.0 18,837.7 84.9 27.65
Within groups 2471.0 548,912.1 222.1 72.35
Total 2472 567,749.8 307.0 100.0

Two groups (O. glaberrima and O. barthii) 3484 Among groups 1.0 18,466.0 83.2 27.67
Within groups 2471.0 537,451.2 217.5 72.33
Total 2472 555,917.2 300.7 100.0
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agrees with their country of origin but not ecology. How-
ever, nearly 40% of the O. barthii accessions were clus-
tered together with African rice accessions, which differed 
between the current study and other studies (Orjuela et al. 
2014; Wang et al. 2014), which may be due to differences in 
the genetic background of the germplasm and sample size 
(Iwamoto et al. 1999; Lu et al. 2000; Nagano et al. 2000; 
Ishii et al. 2001; Park et al. 2003; Ren et al. 2003; Zhu and 
Ge 2005; Duan et al. 2007; Zhang et al. 2014; Wambugu 
et al. 2015; Yin et al. 2016).

The close relationship between O. barthii and many of the 
African rice accessions undoubtedly reflects the direct rela-
tionship between the two species, but it may also be caused 
by some misclassification of accessions. In previous studies, 
we found out that 3.1% of accessions across four rice species 
were misclassified/misidentified (Ndjiondjop et al. 2018b), 
which was smaller than the 4–21% misclassification reported 
in other studies (Buso et al. 2001; Girma et al. 2012; Orjuela 
et al. 2014; Mason et al. 2015). To minimize errors due to 
misclassification during germplasm collection, acquisitions 
and routine genebank operations, our group identified 332 
species- and subspecies-specific diagnostic SNP markers in 
O. glaberrima/O. barthii, O. sativa spp. indica, O. sativa 
spp. japonica and O. longistaminata that can be used for 
genotyping quality control analysis; however, none of the 
markers were diagnostic between O. glaberrima and O. bar-
thii (Ndjiondjop et al. 2018b), which is another indicator of 
very close genetic relationship between these two species.

We used varying sample sizes, varying marker numbers 
and three methods to detect genomic regions with an evi-
dence of selective signature during domestication: (1) the 
identification of selective sweeps, (2) the genetic diversity 
ratio of the wild and cultivated species and (3) the identifi-
cation of loci that had undergone extreme genetic differen-
tiation (Cubry et al. 2018), which all revealed consistently 
much smaller genetic variation in African rice than its wild 
progenitor O. barthii and Asian rice, irrespective of sample 
size and marker density. The reduction in genetic diversity 
in African rice as compared to its wild progenitor was con-
sistent with previous studies conducted on smaller number 
of samples ranging from 19 to 163 accessions, and with 
molecular markers or whole genome sequencing (Li et al. 
2011; Wang et al. 2014; Meyer et al. 2016; Win et al. 2017; 
Cubry et al. 2018).

Selective sweeps in African rice

A severe reduction in nucleotide diversity was observed 
across diverse sample size of African rice when 780 SNPs 
in Dataset-3 that mapped within the 37 candidate selective 
sweep regions detected in this species were used for analy-
sis compared to those detected in O. barthii and Asian rice 
(Table 2). Such sharp reduction in nucleotide diversity in 

African rice in the selective sweeps regions is likely due 
to positive selection during and/or after domestication as 
compared with the other two species, as has been reported 
around known rice domestication genes (Li et al. 2006, 
2011; Olsen et al. 2006; Jin et al. 2008; Zhang et al. 2009; 
He et al. 2011; Zhu et al. 2011; Huang et al. 2012; Hua 
et al. 2015; Civáň and Brown 2017; Win et al. 2017; Lv 
et al. 2018). Some of the most widely cited domestica-
tion genes reported in African and Asian rice include the 
semidwarf gene (SD1) (Cho et al. 1994) and a major effect 
QTL for grain shattering (qSH1) that accounted for 36% 
of yield difference between indica and japonica cultivars 
(Konishi et al. 2006; Onishi et al. 2007) on chromosome 1; 
long kernel 3 (LK3) or grain size 3 (GS3) (Fan et al. 2006; 
Takano-Kai et al. 2009) on chromosome 3; SHAT1, which 
encodes APETALA2 (AP2) transcription factor (Zhou 
et al. 2012), shattering 3 (Sh3), shattering 4 (Sh4) (Inoue 
et al. 2015; Wu et al. 2017), hull color (Bh4) (Zhu et al. 
2011; Vigueira et al. 2013) and LONG AND BARBED 
AWN1 (LABA1) (Hua et al. 2015) genes on chromosome 
4; SHATTERING 5 (SH5) and a major effect grain width 
QTL (qSW5/GW5) on chromosome 5; SHATTERING-H, 
Red grain color (Rc) and Prostrate growth 1 (PROG1), 
which controls the transition from prostate to erect growth 
habit (Tan et al. 2008) on chromosome 7.

Although we were not confidently able to locate the same 
domestication genes in our study, we found various candi-
date genes with known functions that mapped within the 
37 selective sweep regions detected in African rice (Sup-
plementary Tables S3, S4). Some of the candidate genes 
that fell within the selective sweep region on chromosome 
9 with the highest Omega scores were a Jasmonate ZIM-
domain protein that induces resistance to bacterial blight 
(Yamada et al. 2012); DEEPER ROOTING 1 (DRO1) that 
controls root system architecture and drought avoidance 
and increases grain yield under drought conditions (Uga 
et al. 2013); ALDEHYDE DEHYDROGENASE 7, which 
is required for seed maturation and maintenance of viability 
during storage (Shin et al. 2009); DELAYED SEED GER-
MINATION 1 (OsDSG1) that controls seed germination in 
storage and stress responses in rice (Park et al. 2010); ETH-
YLENE RESPONSE FACTOR 72, which regulates expres-
sion of a wide variety of downstream target genes related 
to stress response and development (Phukan et al. 2017) 
and CELLULOSE SYNTHASE-LIKE C2 protein, which 
is required for cellulose synthesis and larger growth (Gu 
and Somerville 2010). Other genes of known function that 
fell within the second selective sweep on chromosome 9 (9: 
6,267,139–6,508,307 bp) are SUBMERGENCE 1B (Sub1B) 
and Sub1C, which are involved in rice tolerance to submer-
gence (Fukao et al. 2006), and NA+/H+ANTIPORTER 5, 
which is a sodium/hydrogen exchanger subfamily protein 
that enhances salinity tolerance in rice (Verma et al. 2007; 
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Khan 2011), both of which are needed when rice is grown 
under flood irrigation.

The second highest Omega scores were observed for a 
selective sweep region identified on chromosome 11, which 
spans 153 kb (11: 16,030,588–16,183,929 bp) and harbors 
5 candidate genes (Supplementary Tables S3, S4). The latter 
includes an aminotransferase-like enzyme, which is involved 
in a number of metabolic activities, including abiotic stress 
in rice (Kothari et al. 2016); a Bx2-like protein that is asso-
ciated with iron toxicity in rice (Finatto et al. 2015) and 
protein kinase domain containing protein that catalyze the 
transfer of the phosphate from nucleotide triphosphates to 
one or more amino acid residues in a protein substrate side 
chain. Of the candidate genes that mapped within the 695 kb 
interval on chromosome 2 (2: 5,973,055–6,668,406), PLAS-
TIDIC NUCLEOTIDE TRANSPORT PROTEIN is involved 
in the carbon flow related to starch metabolism and thus 
larger, more nutritious grain (Toyota et al. 2006); RECEP-
TOR-LIKE CYTOPLASMIC KINASE plays a role in plant 
signaling (Liang and Zhou 2018); PLANT DEFENSIN 1.2 
is involved in defense against fungi (Silverstein et al. 2005); 
CLASS-1-TYPE HISTONE DEACETYLASE is involved 
in reproductive development, seed morphology and plant 
architecture (Jang et al. 2003); gamma ray-induced Leucine-
rich repeat receptor-like kinase (LRR-RLK) plays key roles 
in abiotic stresses tolerance (Park et al. 2014); ALLENE 
OXIDE SYNTHASE 3 plays a role in the biosynthesis of 
jasmonic acid, while β-galactosidase is involved in plant 
defense and the metabolism of galactose-rich polymers 
(Esteban et al. 2003).

Conclusion

The present study was conducted on a large collection of 
genotypes representing the three AA-genome Oryza species 
genotyped using DArTseq-based genotyping by sequenc-
ing. Our study clearly demonstrated a narrowing of genetic 
diversity within the cultivated African rice as compared with 
its wild progenitor. The reduction in the overall nucleotide 
diversity in African rice was 14–20-fold (depending on sam-
ple size) when the analyses were conducted on the genotype 
data of 780 SNPs that fell within 37 selective sweep regions 
identified in this species. These regions contained various 
annotated genes other than the well-known domestication 
genes whose functions provide additional clues as to how 
domestication proceeded from O. barthii to cultivated Afri-
can rice.
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